Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain. Belgium.
Melikyan, G. G. (1993). Synthesis, pp. 833-850.
Mori, K. (1989). Tetrahedron, 45, 3233-3298.
Pèpe, G. (1979). DATARED. Programs for X-ray Diffraction Data Reduction. CRMC2-CNRS, Campus de Luminy, Marseille, France.
Petragnani, N., Ferraz, H. M. C. \& Silva G. V. J. (1986). Synthesis, pp. 157-183.
Sheldrick, G. M. (1976). SHELX76. Program for Cn'stal Structure Determination. University of Cambridge, England.
Software Systems (1986). AME. A Mouse Editor. Copyright (19861988). Software Systems, San Jose, CA 95126, USA.

Acta Cryst. (1996). C52, 1699-1701

2,5-Dithiahexane-1,6-diyl-4,4'-bis(1,3-dioxolan-2-one)

Alexander J. Blake,*† Simon Parsons, Heiko
Richtzenhain \dagger and Martin Schröder \dagger
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: a.j. blake@nott.ac.uk

(Received 8 January 1996; accepted 1 February 1996)

Abstract

Molecules of the title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}_{2}$, possess crystallographically imposed inversion symmetry, with the central S-C-C-S moiety assuming an ideal trans conformation. Molecular-geometry parameters within the 1,3 -dioxolan- 2 -one substituent are compared with those found in the small number of related compounds whose structures have been determined.

Comment

The title compound, (V), is a product of the reaction shown below (Pett et al., 1988).

[^0]The molecule occupies a crystallographic inversion centre and therefore possesses C_{i} molecular symmetry. A small number of structures containing 1,3-dioxolan2 -one units have been reported and some relevant molecular-geometry parameters are given in Table 3. Compound (I) has no reported e.s.d.'s and those for (IV) are high, presumably due in part to the presence of the I atom. The useful comparisons are therefore with compounds (II) and (III), and the title compound shows a very similar geometry to these compounds.

(I)

(III)

(II)

(IV)

The 1,3-dioxolan-2-one ring is not planar; an excellent least-squares plane may be defined by atoms O 1 , $\mathrm{C} 2, \mathrm{O} 2$ and O 3 [mean deviation 0.005 (3) A], but atoms C 4 and C5 lie 0.122 (5) below and 0.158 (5) \AA above this plane, respectively. This imparts a twist conformation to the ring which is distinct from the conformation seen in compound (II) where atoms C4 and C5 are displaced unequally (by 0.04 and $0.13 \AA$, respectively), but in the same direction, from the carbonate plane (Moen, 1982). In compound (III), the ring conformation is essentially planar (Katzhendler, Ringel, Goldblum, Gibson

Fig. 1. A view of the title molecule with the atom-numbering scheme; atom C3a is related to atom C3 by inversion through ($\frac{1}{2}, 0,0$). Displacement ellipsoids enclose 50% probability surfaces and H atoms are represented by small spheres of arbitrary radii.
\& Tashma, 1989). Bond lengths and angles within the thioether chain of (V) assume expected values (Blake \& Schröder, 1990).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=294.33$
Monoclinic
$P 2_{1} / c$
$a=11.614(14) \AA$
$b=5.288(5) \AA$
$c=10.602(15) \AA$
$\beta=110.02(3)^{\circ}$
$V=611.8(13) \AA^{3}$
$Z=2$
$D_{x}=1.598 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.574, T_{\text {max }}=$ 0.639

1615 measured reflections 1081 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0732$
$w R\left(F^{2}\right)=0.1948$
$S=1.162$
1078 reflections
83 parameters
H atoms were allowed to ride on their respective C atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$
$w=1 / / \sigma^{2}\left(F_{o}^{2}\right)+(0.11 P)^{2}$ $+0.44 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 31 reflections
$\theta=12.0-13.5^{\circ}$
$\mu=0.452 \mathrm{~mm}^{-1}$
$T=150.0$ (2) K
Column
$0.45 \times 0.20 \times 0.20 \mathrm{~mm}$
Colourless

868 observed reflections

$$
\begin{aligned}
& {[I>2 \sigma(I)]} \\
& R_{\text {int }}=0.0493 \\
& \theta_{\text {max }}=25.03^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-6 \rightarrow 0 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: none
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.75 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\text {min }}=-0.63 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.017 (11)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Ol^{\prime}	0.9150 (3)	-0.5334 (6)	0.2877 (3)	0.0240 (8)
C2 ${ }^{\prime}$	0.8593 (4)	-0.4815 (9)	0.1590 (5)	0.0265 (11)
O2 ${ }^{\prime}$	0.8715 (3)	-0.6010 (7)	0.0681 (3)	0.0367 (10)
O3'	0.7898 (3)	-0.2715 (6)	0.1410 (3)	0.0285 (9)
C4 ${ }^{\prime}$	0.8047 (4)	-0.1571 (9)	0.2709 (4)	0.0230 (10)
C5 ${ }^{\prime}$	0.8696 (4)	-0.3657 (8)	0.3691 (4)	0.0217 (10)
Cl	0.6823 (4)	-0.0860 (9)	0.2786 (4)	0.0244 (10)
S2	0.61256 (10)	0.1960 (2)	0.18693 (11)	0.0242 (5)
C3	0.5542 (4)	0.0897 (9)	0.0143 (4)	0.0229 (10)

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{C} 4^{\prime}-\mathrm{Cl}$	$1.499(6)$	$\mathrm{S} 2-\mathrm{C} 3$	$1.810(5)$
$\mathrm{C} 1-\mathrm{S} 2$	$1.813(5)$	$\mathrm{C} 3-\mathrm{C}^{\prime}$	$1.521(9)$
$\mathrm{C}^{\prime}-\mathrm{O1}^{\prime}-\mathrm{C}^{\prime}$	$109.7(3)$	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$102.4(3)$
$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$109.6(3)$	$\mathrm{Ol}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$103.3(3)$
$\mathrm{C} 4^{\prime}-\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 3$	$76.8(4)$	$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 3^{i}$	$69.8(5)$

Symmetry codes: (i) $1-x,-y,-z$.
Table 3. Comparison of the molecular-geometry parameters ($\left(\AA,{ }^{\circ}\right)$ for 1,3-dioxolan-2-ones

Parameter a	(I)	(II)	(III)	(IV)	(V)
$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	1.33	$1.327(2)$	$1.316(6)$	$1.34(2)$	$1.323(5)$
$\mathrm{C}^{\prime}=\mathrm{O}^{\prime}$	1.15	$1.207(2)$	$1.192(6)$	$1.21(2)$	$1.200(6)$
$\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	1.33	$1.341(2)$	$1.316(6)$	$1.28(2)$	$1.348(6)$
$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	1.40	$1.447(2)$	$1.443(5)$	$1.42(2)$	$1.460(6)$
$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	1.52	$1.531(2)$	$1.498(7)$	$1.53(2)$	$1.527(6)$
$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	1.40	$1.448(2)$	$1.420(6)$	$1.46(2)$	$1.456(5)$
$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 3^{\prime}$	111	$112.7(1)$	$111.9(4)$	$113(1)$	$112.0(4)$

Notes: (a) numbering schemes have been standarized as for compound (V); (I) 1,3-dioxolan-2-one (Brown, 1954); (II) D-erythronic acid 3,4-carbonate (Moen, 1982); (III) 4-p-chlorophenyloxymethyl-1.3-dioxolan-2-one (Katzhendler et al., 1989); (IV) 4-[5-(2-iodo-1hydrox yethyl)-5-methyltetrahydro-2-furyl]-4-methyl-1,3-dioxolan-2one (Wuts, D'Costa \& Butler, 1984); (V) this work.
An ω-scan width of $(1.8+0.35 \tan \theta)^{\circ}$ was used. The diffractometer was fitted with with an Oxford Cryosystems low-temperature device (Cosier \& Glazer, 1986).

Data collection: STADI4 (Stoe \& Cie, 1995a). Cell refinement: STADI4. Data reduction: X-RED (Stoe \& Cie, 1995b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTLPC (Sheldrick, 1992). Software used to prepare material for publication: SHELXL93.

The authors thank SERC for provision of a four-circle diffractometer and for a postdoctoral fellowship (SP).

Lists of structure factors, anisotropic displacement parameters, \mathbf{H} atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: HAll58). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Blake, A. J. \& Schröder, M. (1990). Adv. Inorg. Chem. 35, 1-80, and references therein.
Brown, C. J. (1954). Acta Cryst. 7, 92-96.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Katzhendler, J., Ringel, I., Goldblum, A., Gibson, D. \& Tashma, Z. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1729-1739.

Moen, T. (1982). Acta Chem. Scand. Ser. B, 36, 345-347.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pett, V. B., Leggett, G. H., Cooper, T. H., Reed, P. R., Situmeang, D., Ochrymowycz, L. A. \& Rorabacher, D. B. (1988). Inorg. Chem. 27, 2164-2169.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1992). SHELXTLPC. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Stoe \& Cie (1995a). STADI4. Diffractometer Control Program for Windows. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). X-RED. Data Reduction Program for Windows. Stoe \& Cie, Darmstadt, Germany.
Wuts, P. G. M., D’Costa, R. \& Butler, W. (1984). J. Org. Chem. 49, 2582-2588.

Acta Cryst. (1996). C52, 1701-1702

4-Methylpyridinium Hydrogen Sulfide

M. T. Andras, ${ }^{a} \dagger$ A. F. Hepp, ${ }^{a *}$ P. E. Fanwick, ${ }^{b}$ R. A. Martuch, ${ }^{c}$ S. A. Duraj ${ }^{c}$ and E. M. Gordon ${ }^{d}$
${ }^{a}$ National Aeronautics and Space Administration, Lewis Research Center, Photovoltaic Branch, MS 302-1, Cleveland, Ohio 44135, USA, ${ }^{b}$ Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA, ${ }^{〔}$ Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA, and ${ }^{d}$ Wilberforce University, Wilberforce, Ohio 45384, USA

(Received 13 January 1995; accepted 2 January 1996)

Abstract

4-Methylpyridinium hydrogen sulfide, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+} . \mathrm{HS}^{-}$, was obtained as a by-product of the reaction between GaCl_{3} and thioglycolic acid in a 4-methylpyridine solution. The compound consists of heterocyclic $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+}$ cationic rings and HS^{-}anions. Both the $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+}$ cation and the HS^{-}anion lie on crystallographic mirror planes with the N, S, two C and two H atoms positioned in the planes. The H atom of the HS^{-}anion was not

 located.
Comment

As part of our program to study the reactions of indium and gallium compounds in nitrogen-donor solvents, we have isolated, crystallized and structurally characterized a number of by-products derived from reactions of the solvents, including piperidinium hydrogen sulfide (Andras, Hepp, Fanwick, Duraj \& Gordon, 1994), 4methylpyridinium bromide (Andras, Hepp, Fanwick, Martuch \& Duraj, 1993) and 4-methylpyridinium hydrogen sulfide, (I), the structure of which is reported here.

(I)

[^1]4-Methylpyridinium hydrogen sulfide, also known as γ-picolinium hydrogen sulfide, retains the basic structure of the 4 -methylpyridine ring (Ohms et al., 1985), but its structure varies from that of 4-methylpyridine in several small ways. These variations include an increase in the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle as the lone pair on the N atom of 4-methylpyridine is replaced with the $\mathrm{N}-\mathrm{H}$ bond of the 4 -methylpyridinium ring and a slight shortening ($0.03 \AA$) of the $\mathrm{C}(2)-\mathrm{C}(3)$ bond length between the neutral and protonated rings.

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule (without the undetected H atom of HS^{-}) showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, while isotropic H -atom displacement parameters are represented by spheres of arbitrary size.

Fig. 2. Packing diagram of the title compound.

Experimental

4-Methylpyridinium hydrogen sulfide was obtained as a byproduct of the reaction between GaCl_{3} and thioglycolic acid $\left(\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$ in a 4-methylpyridine solution. The reaction was carried out under an argon atmosphere. 2.0 ml (18.7 mmol) of $\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ was slowly added to a solution of 0.87 g of GaCl_{3} in 30 ml of 4-methylpyridine. After reacting for 24 h , the precipitate which formed was removed by filtration. The filtrate solution was layered with 30 ml of freshly distilled hexanes. This produced colorless crystals of 4-methylpyridinium hydrogen sulfide which were allowed to grow for 80 d . The crystals were then collected, washed with three 10 ml aliquots of hexanes and dried in vacuo.

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}^{+} . \mathrm{HS}^{-}$
$M_{r}=127.21$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

[^0]: \dagger Present address: Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England.

[^1]: \dagger This work was performed while the author held a National Research Council-NASA Research Associateship.

